
,RECEDING PAGE BLANK NOT FILMED .

Abstract

A specific need for low data rate communication study arises in the small probe

communication link in deep space missions. The low available transmitter power and

the large frequency uncertainty constrain the data rate to be low. An all-digital

comm-unication receiver is proposed-and its feasibility is established. Although

coherent systems should be used whenever practical, the noncoherent MFSK system is

more suitable for very low data rates. The effect of Rician fading on the performance

of MFSK receiver is studied. Fading characteristics of the Venus channel are examined

based on the exponential model and available experimental data on the Venus atmosphere.

Because of the requirement of high communication efficiency, three concatenated codes

are evaluated and. compared. The rapidly varying phase error at low data rate has

great effects on the tracking loop behaviors which are examined by extensive computer

study of the phase plane trajectories. Other topics discussed in this report include

the spectrum of split-phase FSK and the coding/modulation selection for Pioneer-Venus

communication systems.
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Chapter I Introduction

The exploration of the surface of the near planets via landers 
as well as

flyby missions toward the 
far planets will, for at 

least the next decade, be

restricted due to the weight 
limitations and the amount 

of electrical power avail-

able. As a result, the use of 
high power transmitters 

operating in conjunction

with a directional antenna 
may not be possible. Thus the power level of telemetry

signals received on earth 
will usually be below 

that necessary to perform 
coherent

detection.. The bit rate is low due to 
the power requirements.

As a possible solution 
to the problem, the use 

of M-ary noncoherent FSK 
has

been considered for application in low-power space communications. 
Several forms

of spectrum analyzer receivers 
have been proposed [1,2,3] to perform optimal

detection in the presence 
of large frequency uncertainty 

caused largely by doppler

shifts and the oscillator 
instability. The problems of time and frequency

r~., i- n- qneeific multipath models, the

synchronizations have been anayzyeu 
L ,. -

effects of multipath on 
the communication system performance 

have been examined

[5,6].

With the advent of digital hardware, a practical implementation f the M-ary

noncoherent FSK is the use 
of the fast Fourier transform (FFT) 

receiver. In the

ideal case the FFT receiver 
should perform exactly the 

same as the optimum non-

coherent MFSK receiver*. 
The system operation at 

low data rate allows the 
use of

sophisticated signal processsing. 
The performance of the 

digital system, however,

is limited by the effects 
of quantization and finite 

word length. These problems

are examined in Chapter 2. 
Theoretical performance of 

the optimum noncoherent

MFSK receiver with and without multipath fading 
is considered in Chapter 3. For

t ,he "ician channel nnoel assumed, it is found that for a given average error

probability, the required increase in the energy-to-noise density ratio to

combat the multipath fading is reasonably small, particularly when the bit

duration-IF filter bandwidth product is large.
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One important application of the low data rate communications is the

Pioneer Venus communication link. The dense Venus atmosphere causes a severe

fading on the communication link between the discending atmospheric entry probe

and the Earth. The most important atmospheric effect is due to the turbulence

in the Venus atmosphere. Based on the latest Venus 7 and Venus 8 data , we may

conclude now that fading effect is not as severe as early predictions based on

the Venus I4 data. In Chapter 4, we examine the following problems: the

probability of different fading levels relative to the free space as a function

of altitude, the fading rate, the autocorrelation function and the spectrum of

amplitude and phase variations, and the spectrum spreading due to turbulence.

An exponential turbulence model proposed by DeWolf [7] is used in the analysis.

It is believed that the turbulent Venus atmosphere will not cause serious

communication problem in the-forthcoming Pioneer Venus mission.

The rnnit, n-f +te Mbry nechnrent ainnel is, however. very limited

especially at low signal-to-noise ratio [8]. Additional coding implemented by

concatenating the inner code and the outer code can provide low error rate

without excessive decoding complexity. Performance of three different concatenated

coding techniques is studied in Chapter 5. The split-phase baseband format has

become increasingly important. In Chapter 6, the spectrum of the modulated signals

with split-phase baseband is examined. The discussion of this chapter clarifies

the ambiguities among all available results [9].

The performance of commandand telemetry systems, useful in deep-space communi-

cations, is frequently affected by the radio-frequency phase error which is intro-

duced at the point of reception by means of the carrier tracking loop. In low

data rate communications, the phase error may vary rapidly over the duration of a

signalling interval. If the input phase is varying according to a polynomial

function of time, then the phase error can be reduced to zero in steady state by
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using higher order loops. Exactly how the phase error is varying in time is not

known. One way to model the phase variation is to assume that it be a sinusoidal

function of time. Extensive computer analysis of the phase-plane trajectories has

shown that there are threshold values for both the frequency and amplitude of such

sinusoidal variation. This is the subject of Chapter 7.

In Chapter 8, we consider different candidates for coding and modulation and

the interplex system which provides a coherent system without relying on the perfect

reference signal. Finally in Chapter 9, the conclusions and recommendations for

further study is presented.
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Chapter II The Fast Fourier Transform Receiver

I. Introduction

The advent of large scale integration has suggested a new approach to signal

processing problems. In the design of communication receivers, the trend has 
been

toward the increased use of digital circuitries. The speed of the present digital

hardware, however, has prevented the data rate from being in the range of gegabits

per second. For low data rate communication such as between 1 kilobits per second

to 1 bit per second or lower, the digitial system is not only technically feasible,

but also has potential cost reduction over the existing receiving systems. The

low data rate communication system we consider here is designed primarily for deep

space communications. It is also suitable for other applications as long as the

data rate is reasonably low. The digital filters employed in the system can operate

fast enough so that it may be time-shared among a number of channels.

Fcr deep space pplicationC sunh a the omm.n.ication between the ea.rth and

a probe in the atmosphere of Venus, the small transmitter power 
of the probe has

constrained the data rate to be low. The large frequency uncertainty caused

primarily by the oscillator instability and the doppler effects requires a large

IF filter bandwidth and thus the received signal-to-noise ratio is very small.

To have an efficient communication, it is necessary to remove such frequency

uncertainty. A small amount of frequency error which cannot be removed may be

tracked by an automatic frequency control (AFC) loop. In this chapter we propose

a fast Fourier transformer receiver where all components are implemented digitally

except the frequency down conversion. To perform the mixing operation at 2.3 GHz,

the typical operating frequency, by using digital circuitry is not feasible at the

present time. Correlation operation in the kilo-hertz frequency range, however,

can easily be performed digitally.
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There are practical limitations on the digital systems. For example, the

computer word length is finite and the A/D conversion error and the round off

error are unavoidable. Such limitations will be examined in detail.

II. System Configuration and the FFT Operation

The propsed system is shown in Fig. 1. With the exception of the frequency

down conversion and the local oscillator, the receiving system can be implemented

digitally. The input to the A/D converter can have a frequency of several hundred.

hertz to a few thousand hertz depending on signalling frequency and the uncompensated

frequency uncertainty due to oscillator instability and doppler frequency 
variations.

The sampling rate should be at least twice of the largest frequency of the input

signal. Experience has indicated that the desirable sampling rate be four or five

times of the signal frequency. The digitized data may be recorded in magnetic tape

to guard against the loss of data due to system failure such as loss of lock in time

or frequency synchronization. Digital filtering of the digitized data reduces the

noise in the received signal. This operation is optional if the signal-to-noise

ratio is high but is essential if the signal-to-noise ratio is low. The discrete

Fourier transform (DFT) of the data is performed by using the fast Fourier transform

(FFT). The square of the magnitude of DFT is proportional to the power spectrum.

The decision is based on the frequency of the largest spectral component. In the

absence of noise, the receiver will always select the correct frequency. However,

the magnitude of the measured spectral peak depends on the word timing error. In

the presence of noise, time sync. loop provides the word tracking. The frequency

sync. loop determines the frequency drift and provides an up-to-date estimate of

the actual frequency. The local oscillator frequency can then be adjusted according

to the frequency estimate. As the data rate is low, there is sufficient time for

on-line, i.e. real-time, operation of the complete system to provide continuous

frequency and time tracking and the signal-to-noise ratio improvement via digital

filtering.
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The fast Fourier spectral analysis can be very sensitive to the signal-to-

noise ratio. Consider two FSK signals of frequencies 100 Hz and 200 Hz. Each bit

of the received data contains one of the two signals plus an additive Gaussian

noise. The bit duration is 1 sec. and the sampling rate is 1000 samples per second.

The bit duration - IF filter bandwidth product is thus equal to 100. For signal-to-

noise ratios (S/N) = 0.1 and 0.01, Figures 2 and 3 show the power spectra of a

FSK signal plus noise. All spectral peaks are detected correctly in the signal-

to-noise ratios considered. To avoid possible false spectral peaks which cause

decision errors, it may be necessary to do some signal processing to increase the

signal-to-noise ratio. By doubling the sampling rate we can use twice as many

signal samples per spectrum. The adjacent points in the power spectrum can be

averaged to give [1],

2N -1 exp(- 2N-1 2
P(n)= * X exp(- j - + - x exp [- j -

i=O i=l
(2.1)

n = 0, 2, 4,...,N

Figure 4 shows the power spectra of the "two-point" averages given by Eq. (2.1).

Very little is changed in the spectral peaks but the noise is smoothed somewhat.

Increasing the number of averaged points to, say, 4 and 10 may not have the

desired improvement. This is illustrated in Figure 5 for (S/N) i = 0.1 and Figure

6 for (S/N) i = 0.01. -It appears that 4 is the maximum number of points that can

be averaged to obtain any meaningful improvement from spectral averaging. Other

considerations of the spectral averaging have been given by Winkelstein [10]. The'

use of digital bandpass filtering can also improve the power spectrum.

The FFT receiver usually has more difficulty to detect the highest signal

frequency component unless the sampling rate is much higher than such frequency

([3]; The signal-to-noise ratios in- Ref. 3 should b divided by a factor of 2).

In spite of some practical problems with the FFT receiver as described above, the

use of sophisticated signal processing at low data rate makes the FFT receiver a
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very feasible system for deep space communications. Furthermore, the FFT hard-

ware presently available has a speed several times faster than the use of FFT

software. Such improvment in processing time from using digital devices is

particularly important for real-time applications.

The probability of error of the fast Fourier transform receiver is the same

as the optimum noncoherent MFSK (multiple frequency shift keyed) receiver. If

sampling, quantization and finite word length effects are considered, the performance

will no longer be optimum. The sampling rate can always be chosen to be large

enough to have negligible effects. Quantization and finite word length effects

may seriously limit the use of the FFT operation. These problems will be discussed

later.

III. Frequency Tracking in the MFSK Receivers

A large amount of frequency drifts that cause uncertainty may be removed by

prior knowledge and prediction. However, other drifts will surely remain, and it

is necessary to trhck these in any practical system. Several techniques of frequency

tracking have been proposed. Goldstein's technique [1] obtains a frequency dis-

criminator characteristic (S curve) by taking the difference, Fn, of the two terms

in Eq. (2.1) as an estimate of the current frequency error,

F =r -r (2.2)
n rn+1 - n

where
2N-1

1 w 2
rn = I 1 x i exp(- j ~ in)ln N i=o N

is the nth spectral line. Let T be the signal duration. The nominal signal

frequency here is (n + )/T, centered between two adjacent spectral lines. Fn is

filtered and used to correct the local oscillator tuning as in any frequency-locked

loop. The procedure is simple as it involves only FF. One practical problem,

however, is that F n is not necessarily equal to zero even if there is no frequency



drift and no noise. Furthermore the method is suitable for very small frequency

drift which may not be the case in practice.

The second technique due to Ferguson [2] is to use a weighted average of the

k closest spectral components, where k is some small integer. If the received

signal is norminally at frequency n/T , then the estimate is

k/2
F = C a.r (2.3)
n i=k-k/2 i n+i

where C is a normalizing constant and the a. 's are a set of linearizing weighting
1

coefficients. This technique of course is highly dependent on the choice of the

a. 's.

The third technique due to Chadwick[ll] is based on the spectral lines nearest

to the observed frequency. Let r be the spectral component of the observed

frequency and r+l and r-l be the adjacent spectral lines with frequency l/T Hz

larger and smaller, respectively, thin the observed frequency. The frequency

estimate is

r - r
F (2.4)
n 2r T

which tends to have less accuracy than Eq. (2.3) and is useful only to very small

frequency drifts.

The fourth technique due to Simon [12] is an improvement of the third technique.

The frequency estimate proposed by Chadwick and used in a closed loop tracker

suffers from the fact that it is biased. In fact Simon [12] was able to prove

that a frequency estimator based on spectral estimates taken at integer multiples

of l/T cannot be unbiased. To be unbiased, the conditional mean of the frequency

estimate must have the linear variation. It turns out that all frequency estimators

made up of spectral estimates taken at multiples of l/T have a conitional mean

which has zero slope at the origin. Simon proposed an estimator which is derived
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from spectral estimates taken at the adjacent 1/2T points. His estimate is

r - (2.5)
Fn 2(r + r J

Although this requires a slight increase in spectral computation, the variation'of

the conditional mean of this estimator is linear in the neighborhood of the origin

and thus presents a better estimator for constructing a closed loop frequency

tracking algorithm.

The fifth technique digitally implements the automatic frequency control loop

for frequency tracking (See Fig. 1). Detail discussion of the digital AFC loop is

given in Ref. 2 where it is shown that the 
variance of the frequency estimate is

smaller than that of Eq. (2.4). The time sync. loop can be implemented digitally

in a similar manner as the AFC loop.

IV. Effects of Quantization and Finite Word Length

The A/D (analog to digital) conversion error and the round-off 
error of the

digital AFC loop are described in Ref. 3. It is shown that a commercially available

14 bit register length is adequate to provide a signal-to-noise 
ratio of over 40 dB

in digital filtering.

The round-off noise has a more serious effect in the FFT operation. Let Eo

be the quantization interval. For N-point FFT, the round-off noise variance with

fixed point arithmetic is given by [13]
2

2E 0 (2.6)
E 12

which is proportional to N. The variance can be reduced by scaling, such as the

multiplication factor of 1/2, at each stage of the FIFT operation. Scaling, of

course, requires a slight increase in the digit'al hardware. With scaling, the

variance becomes

2 Eo (2.7)
S= 20 ( -- )E 12
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but the noise-to-signal ratio is 5NE2 which is still proportional to N. In low

data rate communication, a typical value for N is 1024. To achieve a signal-to-

noise ratio of 40 dB, the required register length is 13 bits. If the siganl

dynamic range is also considered, much longer register length is needed. Thus

the number of points that can effectively be performed by a given FFT hardware or

software is limited. If the floating-point arithmetic is used, the mean square

error (round-off noise variance) is upper bounded by [14]

2
2 o 

(2.8)

a2 <3m ( - )  2.8)
E- 3

where N = 2m is a power of 2. For N = 1024, the variance given by Eq. (2.8) is

greater than that of Eq. (2.7) but smaller than that of Eq. (2.6).

V. Concluding Remarks

With the present technology in digital devices, we have shown that the proposed

all-digital low data rate communication system which employs a fast Fourier trans-

fo ecciver is comletely easile r o p ance an ecno

The effects of the quantization and finite word length on the digital system per-

formance are normally very significant. It is shown in this chapter, however, that

by properly designing the digital filters and implementing the FFT operation, such

effects can be minimized. A commercially available 14 bit register length can

provide a signal-to-noise ratio of over '40 dB in both digital filtering and FFT.

With continued improvement in the digital hardwares, there is every reason to

believe that the proposed all-digital system provides cost-reduction over existing

receiver systems.
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Chapter III Performance of Wideband Noncoherent MFSK System with Multipath Fading

I. Introduction

Reports from the Mariner V S-band measurements [15], [16] and the Soviet

Space Probe Venera 4, 5 and 6 have both indicated the severe fading of radio

signals at the turbulent Venus atmosphere. Refraction of the radio beam by the

charged particles of the upper atmosphere and the gases that 
constitute the lower

atmosphere produce changes in frequency, phase and amplitude of the signal received

at the deep-space tracking stations on the Earth. In addition, the amplitude of

this signal was affected both by defocusing and absorption in the lower atmosphere.

It is necessary to consider the performance of the noncoherent coded system under

various fading conditions. Glenn [17], Schuman [18], and Chadwick [5] have

examined the effects of multipath fading on the low data rate communications.

Their results, however, are inconsistent and limited to the wideband binary FSK.

The Gaussian assumption made by Glenn for very large IF filter bandwidth (boHz)

and bit-duration (Tb) product may not be valid for intermediate values of boTb'

say 1 < bT < 10. In this chapter the exact error probability of the wideband
ob

noncoherent MFSK receiver is derived from using the well known "Rician" channel

model [19]. The received signal consists of the specular and the random scatter

(diffuse) components. The results correspond to the situation that the reflected

siganl has a much larger bandwidth then the direct signal and that the time delay

between the direct and the reflected signals is much less than the bit duration.

This represents the most important kin d of multipath fading. Other multipath

fading conditions that may limit the performance more but have a smaller probability

of occurence are also. considered. They are: (1) the reflected signal amplitude is

assumed to beconstant over a bit period but varies randomly according to the

Rayleigh distribution from bit to bit, and (2).the delay of the reflected signal

exceeds one bit period. The reflected signal may then be considered'as part of

the additive noise.
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II. Error Probability Computation

Consider a noncoherent MFSK receiver which has 2
n parallel channels where n

is the number of information bits per word. In the absence of multipath fading,

the probability density of the output of the kth channel which is mateched to the

kth signal input is [20]

Sxk + 2nE 2nExk
1 exp -((

p(xk) 2N bT exp - 2NoboTb ) I( NbTb ); xk > 0 (3.1)

= 0 otherwise

where E is the signal energy per bit. For boTb = 1, and with multipath fading,

Lindsey [21] has shown that

exp (3.2

p(Xk) = + + )2 x > 0 (3.2)

= 0 otherwise

and the probability density of the output from other channels which are not

matched to the kth signal is

p(yi) = p(y) = exp (-y); y> . j k

= 0 otherwise

The parameters p and B in Eq. (3.2) are, respectively, n times the energy-to-noise

ratio per bit of transmitted information produced by the specular component and

n times the energy-to-noise ratio per bit of transmitted information produced by

the scatter component, i.e.

p = n( a 2 E  n(2 2E (3.4)

o o 2

where a is a factor proportional to the strength of the specular component and a

is the variance of the scatter component. By comparing Eqs. (3.1) and (3.2), with

boTb = 1, we note that in going from "no fading" to "with fading", the following

change is made:

E E a 1
N- N 1 + k 1 +

o o
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By using the transformation x = xk and multiplyin2N E/N by a2 /(1 + ),

o0

Eq. (3.2) becomes

obx+ P I > 0)boTb>
p(x) (1 + )boTbexp (1 + )boTb  o (l+ )b b  x

= 0 otherwise (3.5)

At the output of the kth channel, the sample average of M = boTb samples is denoted

as u. The characteristic function of u is

C(tl =  M exp - NE 1 2 ( l-1-(l1 + t) (3.6)

[i - iC1 + )t]M  o

Similarly the sample average v of M samples in other channels has the characteristic

function

(t) = 1 (37)
(1 - it)

The probability densities p(u) and p(v) can be determined from Eqs. (3.6) and (3.7)

respectively. he exact error probability is

(n) =p uu pv I:V
j=0. 2

l (2 u)

S nE a 2 2 .(M-1) 1 fu(l+)

1 re-u No 1+ M- 2 (M-11
SnEa M C3.8)

n
M-1 -v 2 n 1 du

v e dv

Equation (3.8) is consistent with Lindsey's result [21] for M = 1 and Chen's result

[20] for no fading case ( = 0, a = 1),

nE M-1 N 2 -1
P r (u+4 ) M-1 o _1 M-l -vdu

PE(n) = 1 - No u (M1). v e dv
I (nEu M-1 o
o ( N )M-1 o (3.9)

where
1 ru M-1 M-k-1

1e-v M-ld = _ _-u u
(M-1-! ) " k0 (M-k-l')

k=O0



A listing of computer programs to calculate Eq. (3.8) is given as Appendix of this

chapter. Equation (3.8) is also similar to an error probability expression derived

by Lindsey ([22], Eqs. (37) and (33)). Accurate computation of the integral in

the Lindsey's expression has recently been made by Adams [23], which is adapted

to the computation* of Eq. (3.8). For M = 5, 10, and 100 with N = 4 and 64, the

error probabilities are plotted in Figs. 7, 8, 9 respectively, versus the total

average received signal energy per bit to noise density ratio,

(1 + y 2 )B/n = (a2 + 2o2 )E/N (3.10)

for y = 0,1,10, and 10 5(). For y = C, (1 + y2 )/n = E/No. It is interesting

to note that for communication channels which are largely scatter in nature, i.e.

2
y < 2, the error performance improves as M increases for large E/N . Also the

performance degradation due to multipath fading decreases as M becomes large. This

is probably due to the fact that the MFSK receiver is a noncoherent energy detector

and the reflected signal tends to increase the total signal eneryv.

III. Other Multipath Fading Conditions

The above results are based on two assumptions: (1) the reflected signal is

purely random and the direct signal contributes to the nonrandom (specular) component

of the received data, and (2) the reflected signal has a negligible time delay from

the direct signal. The second assumption is clearly justified in view of the vast

communication distance involved. The first assumption holds when the altitude of

the space probe above the Venus surface is large enough.that the Venus atmosphere

has little effect on the direct signal.

*The author would like to thank Dr. Lindsey for calling his attention to the

computer program prepared by W.B. Adams, and Mr. Adams for using his computer

program [23].
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If the second assumption is not satisfied, the reflected signal may not 
be

received at the same bit duration as the direct signal. Consider the worst case

that the reflected signal provides no information and can be included in the

additive noise. Then the ,average received energy-to-noise density ratio per

information bit is

a2E Y2 (3.11)

2o2E + N 1+ 
0 B

That is the total received energy-to-noise density ratio per bit is reduced by a

factor

(1 + y2)(1 + /n) ; 2 0 02 2 (3.12)

2
Y

The error probability given by Eq. (3.8) is still valid if the required increase

given by Eq. (3.12) is taken into.account in plotting the error probability. 
For

Y2 = 0, then the receiver does not receive any useful information and the

probability of error is 1 - 1/N. As B increases, Eq. (3.12) indicates that the

reqliieJd increase ' i the energy-to-ncOse denity rztic is almost a linear fCincyiro

of 8.

Next we consider the case that the first assumption is not valid. The re-

flected signal is now assumed to be constant over a bit period but varies randomly

according to the Rayleigh distribution from bit to bit. Furthermore, the time

delay of the reflected signal is assumed to be negligible. The error probability

can be derived as follows. First obtain the error probability without fading by

setting 0 = 0 and a = 1 in Eq. (3.8). Consider now S = E/Tb as a random variable

with Rician distribution,

p(S) -- 2 exp - (S + Sb 1o 2 (3.13)

20 2a a

where Sb is the power of the direct signal component. The error probability without

fading is then multiplied by Eq. (3.13) and integrated with respect to S from 0 to m.
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In conclusion, it is remarked that multipath fading is an important

consideration in the forthcoming deep space missions. An accurate evaluation

of the multipath fading effect requires a realistic channel model which has to

be derived from the experimaental results. As severe fading occurs only for a

short period of the entire mission, the percentile error probability must also

be computed.
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Chapter IV Atmospheric Effects on Pioneer Venus Communication Links

I. Introduction

Based on the communication signals received from Venera 4, 5, 6 and 7, there

is definitely observed fading which may be caused by turbulence in the Venus

atmosphere. In order to determine the possible effects that turbulence could have

on an S4band communication system, theoretical studies have been made [7, 22, 23,

24, 25, 26] to compare with the limited experimental data available. Assumption

was made in these studies that the observed effects were indeed due to turbulence.

It was recognized, however, that other factors such as absorption, refraction and

defocusing, and the unexplained motion of the probe, may also contribute to the

observed fading. But since turbulence appears to play the dominant role, it is

necessary to see what type of S-band effects might produce, and the implications

of these effects on the S-band communication systems.

Venera-7 data indicates that there is no fading at 1 GHz with radio waves

propagating vertically through the entire thickness of the Venus atmosphere.

Fading is still severe as the space probe traversed the planet's atmosphere.

These conclusions are not consistent with the earlier results from Venera-4 data.

Venera-7 data should be more reliable, however, as the probes did land on the

Venus surface. Additional reports on turbulence effects and Venera-7 data are

available in Refs. 27-31. Reference 27 is particularly informative on Venera-7

data. A summary of U.S. efforts on Venus study is given by Ref. 32.

Along with the limited experimental data, theoretical studies are useful to

draw meaningful conclusions of the turbulence effects on radio wave propagation

through the Venus atmosphere. The book by Tatarski [33] provides a useful back-

ground for the study. The theoretical problem areas to be studied are as follows:

1. The probability of different fading levels relative to free space as a function

of altitude.
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2. The fading rate, i.e. the number of fades per second.

3. The autocorrelation function of the amplitude fluctuations about the mean

value.

4. The autocorrelation function of the phase fluctuations about the mean value.

5. The phase and frequency spectra.

6. The spectrum of the frequency fluctuation about the carrier frequency, i.e.

the spectrum spreading due to turbulence.

II. Fading Levels

Fig. 10 shows the geometry assumed for the propagation problem. The procedure

for calculating fading levels is as follows.

The fading of Venera-4 as a function of altitude can be approximated by [26],

GA(z, 0.94 GHz, 0 = 00) = 1.175 exp(- 0.0785 z) (4.1)

over the 20-40 Km altitude range, where

2 2
2 <A > - <A>
A 2 (4 .2)

<A>

A is the signal amplitude, z is the height above the Venus surface, and <.> denotes

the time average. These.measurements were taken at a frequency f = 0.94 GHz and at

a sub-earth point, i.e. 0 = 00. Note that the scale height as defined by Eq. (4.1)

is h = 1/0.0785 = 12.7 Km. When the frequency and 0 are changed, scaling laws

must be used to calculate aA. Under reasonable assumptions, the following 1261

are two possible cases for scaling A 

Case (a): L >> cos
o cosO

2 k
(A = const. (4.3)

Case (b): L <k cos2
o cose

2 k 7 / 6

a = const. ,6  (4.4)
(Cose)A"
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where Lo is the outer scale of turbulence, k = 2.A , and N is the wavelength.

Using the scaling laws (4.3) and (4.4) and Eq. (4.1), we find,

Case (a) a (z, 2.3 GHz, e = 600) = 4.07 exp(- 0.0785 z) (4.5)

Case (b) A(z, 2.3 GHz, 6 = 600) = 3.74 exp(- 0.0785 z) (4.6)

.Given 0 A, the fading level distributions can be calculated assuming that the

probability distribution of the 
amplitude scintillations is Rice-Nakagami 

(a

constant vector plus a Rayleigh distributed 
vector). Based on DeWolf's formula

[22], we let aA = C . The signal with electric field 
E(s) becomes a constant-

plus-Rayleigh distributed vector, 
i.e.

E(s) = E (s)exp(- ) + 6B]

where 6B is Rayleigh distributed, with zero mean and < 6BI 2 > = 1 - exp(- 202).

For oA or a calculated in (4.5) or (4.6), we can compute the Norton parameter K

defined by DeWolf [22] as

K = 10 logl 0 [eXp(22).- 1] (4.8)

which is the ratio of powers in the two 
terms of Eq. (4.7)

Using the formulas in Norton's paper 
[34], the probability of different fading

levels may be found. A computer program which was originally prepared by

Dr. Strohbehn was adapted here for the computation of the fading 
levels for various

probabilities as a function of 
altitude. A listing of the computer programs 

for

fading level computation is given 
as the Appendix to this chapter. 

Because of the

uncertainty on Lo, both Eqs. (4.5) and (4.6) were used for scaling. 
For carrier

frequency 2.3 GHz and 0 
= 600, the two scaling laws provide 

essentially the same

results. For probabilities less than 0.05, the fading 
level vs the altitude plots

shown in Fig. 11 have dips at altitudes between 20 
and 25 km for both scaling laws.

The problem [39] is essentially due to the fact that cquations for generating the
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fading levels are polynomial approximations in the parameter k(kl , k2 in the

computer printout). Since only a few terms are kept in the approximations, the

results are very poor for k values close to unity. It is noted that the dips

all occur between 20 and 25 km where the k value is going through unity. A

simple curve fitting through this trobulesome region still provides accurate

results. Fig. 12 is the fading level plot for various probabilities. The tran-

sition from p = 0.15 to p = 0.20 is not a smooth one; so two separate plots are

provided in Fig. 12. Other fading level plots are given by Chen [36]and

Strohbehn [26].

III. Fading Rates

Given that there may be strong fading, the next parameter of interestis the

fading rates. In order to get a feel for the magnitude of this parameter, it was

approached from several different directions. The first two estimates were based

on the observed fading rate of 1 fade/sec. as measured by Venera-4 and reported by

DeWolf [22]. In the first estimate, it is assumed that the fading rate will scale

as (f f(f (4.9)

where fA is the fading rate and fCl and fC2 are the carrier frequencies. This

formula assumes the fading is dominated by local winds. It gives a value of about

1.5 fades/sec. for a carrier frequency of 2.3 CHz. The second estimate assumes

that the motion of interest is the velocity of the probe, and the scaling law

becomes
v fC

f 2 v Av2 f2 (4.10)
2 1 1

Again at 2.3 GHz, f = 1.5 v 2 /v where v2/v1 is the ratio of the velocities of the

new probe to the Venera probe.
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The third estimate was made completely independently of the Venera-4 
data.

It is known from turbulence theory that the critical size of an inhomogeneity to

produce fading is roughly,

L T 0XL (4.11)
LC 8

where L is the effective path length in the turbulent medium. The fading rate then

is

f P (4.12)
A L

where v is the velocity of the probe perpendicular to the line-of-sight of the
p

propagation path. For the case of interest here,

0.866 v (4.13)

fA rXLA-

For X = 15 cm, we get fA = 3.6 v/AT. If the probe is moving on the order of

30 m/sec in the lower part of the atmosphere, then we get fA = 0.54 to 1.5 fades/sec.

as the effective length, L, varies between 40 Km and 5 Km.

The above calculations give us a rough idea for the expected fading rates.

A more sophisticated model can be used to predict the fading rate as a function

of altitude by knowing the velocity of the probe and using an exponential model

for the turbulent atmosphere.

For Venera-7, the vertical velocity before impact is 17 m/sec. The fading

rate from Eq. (4.12) is 0.985 fade/sec. It may be concluded from the above

discussion that the maximum fading rate is 1.5 fades/sec.

IV. Concluding Remarks

The autocorrelation functions of the amplitude and phase fluctuations, and

the phase and frequency spectra and spectrum spreading are all described in detail

in Refs. 26 and 36. It was shown that neither the pahse fluctuations nor the

frequency spreading would be a major problem in system considerations. The very

limited preliminary report available on the "Venus- 8 " data indicates that the

data from "Venus-8" are similar to that from "Venus-7" [35].
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It is reasonable to conclude that based on the Venera data and the

exponential turbulence model proposed by DeWolf, there will always be strong

fading at low altitude (below 20 km), particularly near the Venus surface.

Fading is least significant if 0 = 00. Further study on the subject matter of

this chapter is much needed, however, to assure the success of the forthcoming

Pioneer-Venus mission.
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Chapter V Concatenated Coding for Low Data Rate ,Communications

I. Introduction

In deep space communications with distant planets, the data rate as well as

the operating signal-to-noise ratio may be very low. To maintain the error rate

also at a very low level, it is necessary to use a sophisticated coding system

(longer code) without excessive decoding complexity. The concatenated coding has

been shown to meet such requirements in that the error rate decreases exponentially

with the overall length of the code while the decoder complexity increases only

algebraically. Three methods of concatenating an inner code with an outer 
code

are considered. Performance comparison of the three concatenated codes is made.

It is shown that the concatenated code with inner code a convolutional code and

outer code a Reed-Solomon code performs the best among the three. Refs. 37-46

contain most of the available informations on the Concatenated code. 
Performance

of the concatenated codes in the presence of multipath fading has not 
been con-

sidered. This chapter is based on Ref. 47.

II. Concatenated Codes

The three concatenated codes considered are:

Code I. inner code a bi-orthogonal code, outer code a generalized Hamming code

or Reed-Solomon (R-S) code.

Code II. inner code a convolutional code, outer code a block orthogonal code (MFSK).

Code III. inner code a convolutional: code, outer code a R-S code.

Other methods of concatenation are possible. For example, two k = 6 by v = 2

convolutional codes can be concatenated to five a 9 by 4 code. Here k is the

constraint length and 1/v is the rate of such a code. Each convolutional code can

be decoded by using Viterbi's decoding scheme. Erickson [41] has shown, however,

that the concatenation of Viterbi decoders does not appear to be useful in the
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present context of the planetary program. He conjectured that the most

appropriate outer code, in any concatenation scheme involving a Viterbi algorithm

inner decoder, was a high-rate algebraic block code.

Consider first a generalized Hamming code as the outer code [38]. The code

has n elements including k information (data) elements and m = n - k check elements.

Each data element is a six-bit bi-orthogonal code word. The receiver performs

both error detection and correction. The generalized Hamming code which has a

Hamming distance of three is a specific case of R-S code. For the R-S code, the

minimum distance d, between two code words is related to the number of check

elements, m, by d = m + 1. The maximum number of correctable elements for each

code word, t, is equal to m/2. The probability of the bit error after both error

detection and correction is

P =AA2 BA4 (5.1)

c A2 + A4

where PA = probability of bit error at the detector output, PB = probabiliy of

bit error at the corrector output, and A2 and A 4 are the normalized data quantities

at the detector and the corrector outputs respectively [38].

Without restricting to the Hamming distance of 3, Forney [37] and Simpson [40]

have considered the bi-orthogonal inner code and the R-S outer code. A typical

concatenated coding system is shown in Fig. 13 where the R-S code can correct up

to 2 errors. The main difference among the three reports [37], [38], [40], is in

the decoding method. Forney considers both the maximum likelihood decoding and

the generalized minimum distance decoding of the R-S code. Both Miller and Simpson

use the algebraic decoding for the R-S code although their error probability

expressions are inconsistent. The digit error given by Simpson is

n-t-I (+ + [n\ _i , -i n /n
Sn "e e) L ie  e/

i=t+l 3-=n t
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where P is the probability of error of the bi-orthogonal 
.code word. Available

e

results are shown in Fig. 14 with the error probability plotted as a function of

signal energy per bit to noise density ratio of the inner code. Curve 1 has a

28 - symbol R-S code and a. bi-orthogonal code of rate 1/16 [37]. Curve 2 has a

(18, 12) R-S outer code (12 information elements out of a 
total of 18 elements)

and a 6 bit bi-orthogonal inner code. [3 8 ]. Curve 3 has a (63, 49) R-S outer code

and a 6 bit bi-orthogonal inner code [40]. Although the code lengths are not the

same, it is clear that Curve 1 is better than Curve 2 vhich is better than Curve 3.

The- block diagram of the concatenated system for Code II is shown in Fig. 15.

Although it is possible to determine the upper bound of the 
error probability, the

bound may be too looseto be useful. Some computer simulation results were reported

by Richardson et.al. [44]. Let M be the bit-duration - IF filter bandwidth product.

Figure 16 is a plot of the error probabilities for v = 3, k =6 inner code and

v = 5, k = 8 inner code with M = 2 and 10 along with the performance of the coherent

systems without concatenation. The degradation in performance M = 2 to M = 10

is approximately 1.1 to 1.4 dB in Eb/ IN o , the signal energy per bit to noise density

ratio. It is noted that the performance improvement over the wideband noncoherent

MFSK system [20] is very significant for both M = 2 and 10.

Code III was considered by Odenwalder [39]. A block diagram of the system is

shown in Fig. 17. For any inner code of contraint length k bits, there 
exists a

k k- d information bits. If P

R-S outer code of block length 2 - 1 and with 2k - information bits. If P is

the error probability of the convolutional inner code, 
then the word error probab-

ility with the R-S outer code is

2k 2k k
P ( e ) 2= 1 pt (1 - P 2-1-t (5.3)

t=l d +1

where d > 2t + 1 and [] is the closest integer to d/2. Although analytical expres-

sion of error bound of Code III is available for very 
limited cases [46], the com-

pute-r simulation result is more useful. The best computer simulation result of
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(1/3, 8) convolutional inner code and 2 - symbol R-S outer code is shown in

Fig. 18. Here v = 3, k = 8. Also plotted in the same figure are the error probab-

ilities of a 5-bit bi-orthogonal code, an (1/2, 8) convolutional code with the

Viterbi's maximum likelihood decoding (from Odenwalder [39], Chapter 5), and a

concatenated code (31, 25, 5) with (31, 25) R-S outer code and 5 bit bi-orthogonal

inner code. The improvement from bi-orthogonal only to bi-orthogonal/R-S code is

added to the (1/2, 8) convolutional code to give an estimate of the error probability

of a concatenated code with (1/2, 8) convolutional inner code and (31, 25) R-S code.

The error probability of Code III is the best among all concatenated codes. The

required interleave-buffer, however, essentially increases the word length, or

reduces the effective signal-to-noise ratio.

Performance curves indicate that the concatenated codes greatly improve the

peformance over the uncatenated codes. The decoding complexity increases.from

Code I to Code II to Code IIIwhile the performance improves in the reverse order.

The decoding complexity depends manily on the inner code used. For the low

available signal-to-noise ratio, Code III is definitely the best choice to keep

the error rate also at a low level.
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Chapter VI On the Spectrum of Split-Phase FSK

I. Introduction

It is now well known that the use of a split-phase baseband 
s-i.gnal provides-

better DC response as compared with the use of a non return-to-zero (NRZ) baseband

signal. The split-phase signal, however, requires a larger transmision bandwidth.

The discrete frequency components that always exist in the spectrum 
of split-phase

FSK facilitate acquisition and tracking of bit clock. Spectral analysis. of the

split-phase FSK has been reported by Hartmann [48], Shehadeh. 49] and Chen 150].

Such analysis is needed to determine the bandwidth of the modultated signal and

the magnitude of the discrete frequency components. In this chapter, we compare

the expressions from Refs. 148]and[
49]for. the spectrum of split-phase FSK signals

and determine the conditions under which the expressions coincide. One uni.que

conclusion that can be made from all expressions is that the split-phase FSK has

very significant discrete frequency- components at the signalling frequencies, which

are useful for bit synchronization.

II. The Spectrum of Split-Phase FSK

The paper by Hartmann [48] has presented a general and very useful expression

for the spectrum of split-phase (Manchester coded) FSK with continuous phase. The

main result of the paper is given by Eq. (14) which can be simplified to

2 2D2 2- (FsinfF - DsinwD)2 26.1)
G(F) =  (cosD - cosF) 2 2D 2  (Fsin2 F - Dsin) 2

T 7 (F - D) IT (F 2  D2 ) 2  n

where we have followed the notations of Ref. 48 and let T be the bit duration,

. = 2rrf., i = 1,2, be the two signalling frequencies, 2Af = f2 - f 2 fl

F = (f - f)T, (fl + f 2 ), and D = (Af)T be the deviation ratio. The paper

mentions the result by Shehadeh and Chiu 149] who assume that fl and f2 are even

integers multiplied by l/T. Under this assumption, D is an integer (D / 0) and
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Eq. (6.1) becomes

1 G(F) = 1 ((-1 )D cosF) 2 2D 2 2 + 0.56(F - D) (6.2)
TG(F) (F2 -D22

where D is a positive integer.

The result in Ref. 49 mentioned above is the 
Eq. (66) which should be corrected

to read, 2

A 2  A2  2 2

SFSK-C(W) = -6( - ) +  - 6(w +  Wl) + 66( +
FSK-C 1 1 1 1- 2 21

sin 21+ ( )2cos1

A2t sin2(w2 - _)t/h 2 sin + £-)cos 1

1 (w - ')to/4 (1 + 2

A2t sin (• w)t 2 22 co) O2

( +_) (1 + )2
2W

A2 to sin 2 (l )to/4 sin 2 ( 2 - )to/4

2 (W, w)t/ 4  (m2 - )

Isin 1 cos(l -.w)t°/2 + cos 1 sin(w -w )t/2] [sin2s 2cOS(w )to 2cos 2sin( 2
-)t 0 /2 ]

x ( 1 + W ) (1 + c_ )
1 2

A2 t sin (3 0 /)t / sin2 02 - w)t /

2 (W - wt/4 2 - t/

Isin sin(w-w)to/2 - cosq 1cos(wl-)to/2][sin 2sin( 2-o)to/2 - - cosp 2 cos(w 2-w)to /2

+ 2 ) (1+ )
01 32 (6.3)

where we have followed the notations of Ref. 
49 with to = T. Since fl and f2 are even

integers multiplied by l/T, the condition 
= 2 is sufficient for the phase of the
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ignal to be continuous. Letting =  2 = 4 and averaging Eq. (6.3) over € one

,ets after some simplification,

2  2  2 2

SFSK-C() i- 6(w - ) + i ( W  i) + 2 6 (w - 2 ) + 6(w + W2

2 1+ ( 2 2 1 + )2
2 sin (w l-w)T/ 2 w A2 sin (w2 -w)T/42 2

, -(--_ )T/4 i + 2
T ( + -)2 8- ( )T/ (1 + 2

Wi W2 .

2 2 1 +
A2T sin (wl-W)T/4 sin (w2-w)T/4 1 W 2

- --4 w-)T/ - _)T/ cs 2)T/2 ( + )( 1 + )
W1 

2

(6.4)

In the last term, cos(wl - w2)T/2 is always equal to one since fl and f2 are even

integers multiplied by 1/T. Letting A = 2, folding the negative portion of the

spectrum over to positive frequencies, and letting

D = f 2 -- f)T, F = (f - fc )T, f = fl + f2

one finds the normalized spectrum,

-G (F) 0.5 6(F - D)

(F + D)/ 2  (fT - D)2 + (f+ T + F)2

sin 2(F + D)/ 2 (fTc c+ (F + D)/2 (2f T + F - D) 2

sin2(F D)/2 (fT + D) 2 + (fcT + F)

2sin r(F + D)/2 sin (F - D)/2 c c
i(F + D)/2 r(F -D)/2 (2f T + F) 2 - D2

(6.5)

The discrete portions of the spectrum are identical in Eqs. (6.2) and (6.5). The

continuous portion of the spectrum in Eq. (6.5) has been computed by H.P. Hartmann

and is shown in Fig. 19. As we can see from the spectral plots; the two expressions
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(Eqs. 6.2 and 6.5) agree for the case fcT >> D. If this condition is not satisfied

(dashed curves), the expression derived from Shehadeh 
and Chiu [49] takes into

account the spectral foldover, while the expression from Hartmann 
[48] does not.

In fact, it can be shown that the two expressions coincide for fcT >> D, fcT >> F,

and D being a positive integer. If one let f T >> D and fcT >> F in Eq. (6.5), one

finds, 2 + (f + F)2  (f 2

(f T - D) + (fTT + F) 2(fT)

(2f T + F - D)2  4(fT) 2  2

(fT + D) 2  + F 2  (fT) 2 - D2 + (fcT + F) 2  1

c c 11
2 2' 2 2 2

(2fT + F + D) (2 fT + F) 2 D

and

1 (F) 1 sin2 (F + D)/2 sin 2(F - D)/2

T FSK-C = (F - D)/2 - (F - D)/2

1 1 - cos7(F + D) 1 - cosn(F - D)2

22 (F + D) (F - D)

1 F2D + (F - D)cosw(F + D) + (F + D) cos7(F - D)

22 F2 - D2  (6.6)

in addition to 6 term. If D is an integer, Eq. (6.6) reduces to Eq. (6.2) and thus-

verifies the computer results. If D is not an integer and if f T >> D, the two

expressions do not coincide. For example, one may consider the special case F = D.

Eq. (6.5) becomes 2 +  2D 2

1 sin 2 F2(fcT) 1 sin rF 2

'GFSK-C (F)( F (2fcT)2 2 rF

In Eq. (6.1), by using L'Hospital's rule, the continuous spectrum 
becomes

2D (cosdrr - coswF) sinrwF

F F=D

and the inconsistency is clear.
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III. Concluding Remarks and Acknowledgement

We have shown that the two expressions of the spectrum of the split-phase 
FSK

coincide if fcT >>D, fcT >> F and D being a positive integer. Significant discrete

spectral components occur at F = D, and D being a positive integer. It is assumed

that the FSK signal has a continuous phase.

The author would like to thank H. Peter Hartmann of AG Brown, 
Boveri & Cie of

Switzerland for the fruitful exchanges on this subject which lead to Ref. 9.



-32-

Chapter VII Computer Study of Phase-Locked Loop Behaviors at Low Data Rate

I. Introduction

The performance of command and telemetry systems, useful in deep-space communi-

cations, is frequently affected by the radio-frequency phase error which is introduced

at the point of reception by means of the carrier tracking loop. In low data rate

communications, this phase error may vary rapidly over the duration of the signaling

interval. Causes of this type of behavior in planetary entry are turbulence, dispersion,

attenuation and residual doppler. The phase variations cannot be tracked by a phase-

locked loop of lower bandwidth, while the signal-to-noise ratio in this minimum loop

bandwidth is too low.

When the ratio of the system data rate to carrier tracking loop bandwidth is less

than one, the problem of power allocation between the carrier and the data has been

considered by Hayes and Lindsey 151], Thomas [52], Sergo and Hayes 153]. For channels

with time-varying phase, Heller [54] examined the performance of a sequential decoding

system. An excellent treatment of the nonlinear analysis of the phase-locked loops

is given by Viterbi [55] and Lindsey [56].

In this, chapter the rapidly varying phase is characterized by a sinusoidal input

phase, ksin (w t + 7/6 ), which models a typical phase variation in communication over

turbulent media. Nonlinear analysis of the phase-locked loop behaviors in the absence

of noise has been performed by extensive computer study of the phase-plane trajectories

1571, 158], 159], [60]. Readers interested in the detailed computer results should

refer to Refs. 57-60. Only the problem formulation and the summary of the computer

results are reported in the present chapter. Both the sinusoidal and the sawtooth

phase detectors are considered. The sawtooth phase detector considerably improves

the acquisition behavior of the phase-locked loop at low data rate 160].
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II. The Loop Equation

Following the notations of Viterbi([55], Chapter 3), we consider first the

differential equation of a second-order loop with perfect integrator.

del (7.1)
S+ AK cos ~- + aAK'sin =

dt2  dt dt

where (t) is the phase error, AK is the loop gain, 01(t) is the phase of the input

signal, and the transfer function of the loop filter is

F(s) = 1 + a 
(7.2)

s

The loop can track the frequency ramp with zero steady state error. Now we consider

the important case that 0 1(t) is varying several cycles over a bit interval of, say

1 second which is typical in low data rate communications. The variation is normally

caused by the time-varying channel.' Let

1(t) = k sin (wot +~) (7.3)

By normalizing the variables with

a' a , d (7.4)
a= 2 , T = AKt, ' = 2

Eq. (7.1) becomes 2
ikw 0 W0

+ cosq + a' sinq = - -- sin (A + (7.5)

(AK) 2

which in turn can be written in the state equation form as

xl = 2  k 2

X2 = - X2 cos x - a' sin x - 2 sin ( + ) (7.6)

where xI 
=  (t). It is noted from Eq. (7.5) that the larger the loop gain, or the

loop bandwidth, the smaller the frequency of the forcing function given 
byEq. (7.3).

The frequency f is reduced by a factor of AK, and the amplitude kwo is reduced

by (AK) 2 . In other words, the large loop gain reduces the effect of the time varying

input phase l(t).

For a third order loop with loop-filter transfer function

F(s) =1 + + (77)
s 2s



the differential equation (Viterbi [55], p. 64) is

t de2
d2 + (AK - + aAK)sin(t) + bAK u = 1 (7.8)

dt2 dt dt

which,using Eq. (7.4) and (7.3), can be reduced to

S+ $ cos4 + a' sin + b' sinn dT - sill - + (7.9)

which in the state equation form becomes

1  2 2  T

x2 =  x 2 cos x - a' sin x - b sin x dT - --- )2 sin (---+) (7.10)

where

b' = and xl
(AK)2

Phase-plane analysis of Eqs. (7.6) and (7.10) is performed by using the second-

order Runge-Kutta method (see, e.g [59]). The computer results are reported in

Refs. 57-59. A typical computer program is given as Appendix to this chapter.

If the sawtooth phase detector is used to replace the sinusoidal phase detector,

the state equation becomes

Xl = X 2  kw2

x2 = - x2 - a' saw(xl) 2 sin ( + ) (7.11)

(AK)2 AK
where

saw(x) = x, Ixi <

and saw(x) = x mod. 21, Ixl >

Some comparison of the two phase detectors and the tanlock phase detector has

been given by Long and Rutledge [61] and Uhran and Lindenlaub [62].

III. Summary of Computer Results

(1) Sinusoidal Phase Detector, Second-order Loop with Perfect Integrator

Consider first k = 0.001. The loop behavior depends on the ratio fo/AK. It is

noted that the steady state phase error cannot be reduced to zero because of the
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continuous input phase variation. The condition for stability is the condition for

the loop to settle with a stable "limit cycle." It 'is determined from the phase-

plane study that fo/AK < 4 is the condition for stability. The parameter values

for the equality to hold are called threshold values. For specified (fixed) fo'

the threshold value of k depends on a' = a/AK. For fo = 1.1 Hz, AK = 16, a = 8 ,

kth = 1.661. For fixed k, the threshold value for fo is very sensitive to small

parameter variation. For k = 10, AK = 16, a = 8. The threshold value can be

determined from Figures 20, 21 and 22. The trajectory is still converging at

foth =0.593 . It starts to diverge at f = 0.5943 and the loop is clearly unstable

at f = 0.5948.
o

(2) Sinusoidal Phase Detector, Third-order Loop with Perfect Integrator

For k = 0.001, fo/AK < 1/4 also appears to be the condition for stability. The

increase of the parameter b' only causes the trajectory to drift more with larger

steady state phase error [59J. A careful comparison [59] between the second-order

and the third-order loops indicates that the third-order loop has no real advantage

over the second-order loop at low data rate.

(3) Sawtooth Phase Detector, Second-order Loop with Perfect Integratodi

For a = 8, AK = 16 and the specified values of fo, the threshold values of k

can be tabulated as follows:

fo(H) kth(sawtooth) kth (sinewave)

1.1 8.98 1.661

1.0 10.60 3

0.8 16.215 5

0.5 4o.5 10

0.25 163.0 50

where the estimated threshold values of k for the sinusoidal phase detector are also

included.
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For input signal phase with frequency ramp of slope R rad.aec 2, Viterbi (1551,

Eq. 3.27) has shown that the condition for stability for the sinusoidal phase

detector is R' < a' where R' = R/(AK) 2 . By using the sawtooth phase detector, the

condition for stability is determined from the computer study as R' < 3.017 a'

which is a considerable improvement over the sinewave phase detector.
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Chapter VIII Coding/Modulation Selection and the Interplex System

I. Introduction

In this chapter we shall be concerned with the selection of coding/modulation

techniques for the Pioneer-Venus main probe and small probe communication links 163].

We then discuss a very promising modulation system, namely interplex, a straight

PCM/PSK approach which obtains a coherent demodulator reference for binary PSK when

the carrier is completely suppressed.

II. Coding/Modulation Selection

The main probe communications link, like most space applications, is constrained

by effective radiated power but not bandwidth. Hence coding to increase channel

efficiency is desirable so long as the resulting complexity is manageable. Most

coding techniques commonly used, however, are designed to improve efficiency of

white Gaussian noise channels and are extremely sensitive to burst or fading effects

which may be anticipated in the Pioneer-Venus missions. The heavily interleaved

block-type codes designed for bursty channels are generally not very efficient. A

solution is to concatenate two codes: an inner convolutional code and an outer Reed-

Solomon (RS) with an interleaving buffering scheme as discussed in Chapter V. It is

anticipated that when the channel is well behaved (i.e. not bursty), the E/N o required

will be 3 dB + 1 dB with these codes. During periods of deep fading most errors will

be corrected provided that the fading characteristics have been reasonably well

predicted and the channel is below threshold no more than 30% of the time [64].

Certain convolutional codes, namely the diffuse threshold-decoded convolutional and

Gallager's adaptive error correcting scheme are capable of correcting random errors

and extended error bursts and are thus suited to channels with memory. To design

such codes effectively, it is necessary to understand the fading spectrum rather

well. Presently the precise fading characteristics are not available (see Chapter IV).

We have to make use of the best available information in code design.
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From the nature of the convolutional coding systems and from test results, it

is found [65] that the Gallager code is more suitable to channels where bursts are

dense and intervals between bursts are clean, and the diffuse code is optimum for

channels where bursts are more gradual and background error rate is not negligible.

The adaptive Gallager code [66]which employs convolutional coding to combat random

errors and a form of time diversity to combat burst errors appears to meet the needs

for the communication situation under consideration. The reasons are:

(1) It offers the simplicity attendant to using Viterbi decoding algorithms when

the channel is not experiencing severe fading.

(2) The bursty channel actually exists for a small percentage of the overall mission

duration. The code is suitable for both bursty and additive Gaussian noise

channels.

(3) Test results indicate that at a burst-correction capability of about 6 seconds,

the -code is error-free 90- percent of the time which is much better than the use

of simple diversity system. This capability is adequate for the Venus atmospheric

channel as the average duration for each deep fade is less than 6 seconds.

Errors in the guard space, however, must be corrected as much as possible.

Modulation choices are not independent of the coding choice. Two types of

modulation have been considered for use with heavily coded systems. These are

coherent PCM/PSK/PM and noncoherent MFSK. Generally the coherent system is more

efficient except at very low data rates in that case the noncoherent system is better.

It appears that the baseline modulation/coding scheme for the large probe should be

based on coherent PCM/PSK/PM modulation with convolutional inner and RS outer codes.

Small probe communication geometry is similar to that of the large probe,

particularly during the terminal descent phases; that the communications environment

will be essentially the same. In particular, the possibility of deep signal fades

due to atmospheric turbulence will be present. Consequently, the coding approach
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suggested for the large probes, a convolutional 
inner code concatenated with a RS

interleaved outer code, is also appropriate for the small probe. With regard to

modulation, however, the low data rate for the small probe results in a poorer ratio

of the required carrier power to data channel power, in a PSK/PM system, than was

the case in the large probe. In this case the noncoherent MFSK system would be a

better choice.

III. The Interplex System

It is well known that maximum efficiency of a coherent single-channel PCM/PSK/PM

system is achieved by completely suppressing the RF carrier, and that a coherent

local carrier reference required to demodulate can 
be established by means of a

Costas loop [67], a squaring loop [55] or another type of decision-directed tracking

loop. However, in the existing two-channel system, 
it is theoretically not possible

to completely supress the RF carrier without simultaneously eliminating one of the

channels. RecenLly a new two-chann l modulation scheme called Interplex [68] has

been suggested where the intermodulation loss and the RF carrier power can be

eliminated without compromising any of the advantages of the existing system. Not

only is the Interplex system more efficient than the existing system, when some

unsupppressed RF power is transmitted, but it permits 100% of the transmitted power

to be allocated to data-bearing sidebands while preserving two-channel PCM/PSK/PM

operation at all ratios of channel powers. In this mode, the RF carrier is completely

suppressed; therefore, it is necessary to develop a method for maintaining frequency

and phase sync at the receiver by methods other 
than the standard phase-locked loop.-

It can be shown that although Costas or squaring loops can be used, their

performance deteriorates rapidly as the ratio of the channel powers (or data rates)

a= p,/P, increases until no tracking is feasible when a = 1. Timor and Burman [691
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developed methods for tracking the phase of a suppressed carrier 
for the two-channel

Interplex system. The resulting RF power will be independent of a. They also

considered the performance of the system in the presence of noise. Further comparison

between the conventional and the Interplex system is available in Ref. 70.

The Interplex system offers a good possibility for 
maintaining coherent operations

in both large probe and small probe communication links. Performance of the system

in the presence of deep fades remains to be studied.
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Chapter IX Conclusion and Further Work

I. Conclusion

In his efforts to understand more about distant planets via unmanned space

missions, man has benefited far more than the knowledge he gained about such planets.

In the communication system design, for instance, there have been numerous problems.

which were never experienced before in commercial and military communication

applications. The research and development efforts in deep space communications

have added an important dimension to the field of communications. For the first time

there is considerable study in designing communication receivers operating in the

presence of large frequency uncertainty [71]. The possibility of deep fades due to

the Venus atmosphere has prompted careful study of the Venus channel. A need for

high communication efficiency leads to intensive efforts of designing 
better codes

such as the concatenated code, and decoding algorithms. The availability of new

digital processing techniques has improved the software receiver design. These

have been the topics in the present report.

It is reasonable to conclude that, although there are still many problems to

be studied, we now have a much better understanding of the low data rate digital

space communications. Continued efforts in these studies will assure the success

of the forthcoming untried deep space missions. And many of the results we obtain

from these studies will also be very useful for solving the communication problems

on earth.

II. Recommendations for Further Work

In Chapter II, the software or hardware implementation of the proposed all-

digital system is recommended.

In Chapter III, re-evaluation of the system performance is recommended when

more precise fading characteristics become available.



_42-

In Chapter IV, precise fading characteristics remain to be examined.

In Chapter V, the best available performance from using the concatenated

code (Code III) must be evaluated theoretically.

In Chapter VI, further study is needed on the power spectral density of the

angle modulated signal with split-phase baseband format.

In Chapter VII, theoretical analysis of the phase-locked loop behaviors with

rapidly varying phase error is much needed. Further computer study on the third-

order loop is also recommended.

In Chapter VII, the modulation selection for small probe communication link

needs further study in view of the available Interplex system.
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APPENDIX - CHAPTER 2

MA, INPG G M'

IMPLIClf REAL*8(A-H,,-Z)
I F .'S IO 1 A( 1. Ol. ),3B(001 ) ,P(3), X(3)

1 READ(1.,10 ,END=50O0)M,NBI IS,G-S,P( ),P(2),N6,E6,E7,E8,ERROR
10. FOt'I , r A (2 15 2 F5. 0,2 10. 0,I ,3F 10 0, 10. 0).......

P= 2 -. Bl I TS

20 F(RMAT( 'OM= , T[Y,5X , '= ' ,[ 7,SX, 'GMSQ=C' FIO.4,: OX,'WITrH' 5,' ORDINA
;TES'/'0 P',15X9'X(P) INITIAL'/)
1(3)=1.-P I)

.... AL9=0. -..................... .... . ....

IF(M-) 1 10,17040
40 DO 50 L=2, M

XL=L
50 9L G (X ) .........................

170 DO)0 200 I=1,3

Z 2=/N

180 CALL GAMIN(M,MZ1, IH)
.EI =( H-C2)/DEX P ( M 830L tG Z 1)-Z 1- A L 9)-. . . - ........ . ...

ZI=Z-EL
F(DABS( E) .GOE. 1. -.0-6 0 O 180. ....................... ... .

X(.I)=ZL

200 WRITE(3,60)P (i)AX. ( '.............. ..

60 FORMA I X , 1P2D 15.6)
k. WI IT (.3,7 0)
70 FORMAT( 'OE/NO' ,15X, 'PE(N /2) , 10X, PE(N6) ,1).X, 'PE' 14X, 'ERROR ) /
.. 300 R 6=N iSB I TS -EQi 1 + i S O )........... ......... .

09=1. +MSQ+R6.
9=(l.+GMSQ)/09

A2=M-R6*G, MiSQ/D9
H1=(X(3)-X( 1) /N6 -.

N6L=N6+1
DO 630 I=lN6 - .L.-- -- .-.. ...
X9=X(1)+H(l -i )
CALL 0 SU A B M, A T, X --.. 7)

CALL GAMIN(M,M8,X9,H)

. .630 A( I )=Q*H

AI L=0.

UO 710 I=3,N6M,2
710 AII.=AIL+A( )



A2

S[UBROUTlINE QSU3M( M9,A2 , ?,Ef9, Q)

C O!tPfUTFS THiE GL'JEPAL i llf 0 FUNCTION WHARE

S M9= M , A2= A**2/2 Q 2= B*04/2 E 9 =ERROR LIMIT Q THE ANSHrER

I 'L i0T REALO:8(A-,W-L

Or)=EXP(-62
0o=i. -DO
I I-C ').Gf. 1 )C TOi 31.6

R=L.
307 XKO=A2*X/R-

00=BK2*D'0/R
00=GO-DO

IF(P.LT.RL)GJ TO0314
IF(L4.LT.E9)G0 TO 33?

314 R-R+............l.......~
601 10 307

316 M8~m9-l

1 0 3=G0-0

I)O=F)*B 2 / t M- L.
Q=i.-GO*XKO

328 XKO=A2*cXKO/R' *

DOL=.2*DO/i +XM8)

(;O-DO .--...

TE(R.LT.R1)Gl ro 335
-. .I F(L4.LTIE9WO [0-331--.-.-

337 R ETU RA

GAMI N

SUtRUUT INE C \MI NC 9,M8, X9, hI)

'-"COMPUl LS AUCRMAL I LAD IN(OWPETE GAMMA FUNCT IOH- WOWRE

o 149 = , m8=m-l X9 =X H5 THE ANSWER

IMPLICIT REAL~d(A-H,U-LT
1 7 LX P(- X9)

I FJ(M9.EQ. 1) GrO 21 M .

00 286 MO1M -

05=(x9/M)405
286 115=fl5-D5
287 RETU&N

END)



AI1= .Z HL*A 11/3.
A 2=A Il
00 770 I=I.,N61i,2

770 B(1/2+1=A(.I)
Al1=0.

-NI6/2
DO 820 I=2N2, 5,2

820 1i=4I1+1(f)
A I =2_. A 1 L. 5( ( 1) -+ (N5+ ) )

N (M = 3 N5-1
DO d60 L=_ , ,"M,2

860 AIl=AI +B(I)
A [L=4.Hil l/3.
A 8=(AL2- ll)/15.
A.13= A I2+!, I

A12=1.-AI2
AI 3=1.-A .3
A 8=-A18
WRITE (3,90)E6, AI ,A1I 2,AI3,A18

90 FOR:*MAT ( IX,1 I P 5 .5.6)
E =E +E 8
IF (E -E7) 300, 300, 1

5000 CALL EXIT
E NI)
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APPENDIX - CHAPTER 1

MA AINPG M

C TL : AMPLITU FADING STAT IST-CS --- AFS--.

C

C !HIS PROCGiAi CALCUIATEI-S THE FACING LEVELS FOR D-IFFERENT
C Pi.CLAO1LITIES AS A FUNCTION OF ALTITUCE ABOVE THE VENUS SURFACE.

FC.R EACH PRCb AILITY INPUT, TIE OUTPUT CONSISTS OF T E FACI N
C LEVELS IN 01 1S A FU-IJCT ION OF li-IC ALT ITUE--Z. ITHE VALUES 'RI' AND
C R2' ARE ThE FA ING LEVELS CLiMPARED TO FREE SPACL FOR TVAG DIF-
C FEREU T SCAL 1 G LAWS.
C
C IN THIS PRCGRA P' THE EXPRESSIONS FOR KI AND K2 ARE BASED _ON SDEME
C FORMfUL-ARS BY DE WOLF.

C

C FRREQUENCY 2.3GH-IZ, THATA = 0 DEGREE.
C

RFAL Kt.K2.K
S FOR AT(F20.3)

2 FORMAT 5XF12 .94 (F4. 5,3X))
3 FURMAT( P=' ,5XF4.2)
4 FO R T I( X, Z ((M)',10X, R 1(13) I, 10X ,'R2(D ) _ _CX_ 'KI' ,14X,'K2'
5 FOR P AT ('O'
10 READ(1,END=3 00)P

R ITE(3,5)
20 1WRTE (3,3) P

WR ITE(3, )
30 CALL SUB1(YYP)
40
50 DO 190 I=1,51

Z=I-- 1..

60 =1./.0785

70 E= LX ( -Z./1)
80 S1=2.87-E

90 S 2-1.954E
100 K l =SQR T(EXP(2. S1*2)-1.

,110 K2 T(EXP( 2. *S2Ie,'2 ) -l .)
120 K=K1
130 CALL SUB2(RKYYP)

140 RI=R

160 C4LL SUB2(R,K,YY,P)
170 R2 R

,RITF(3,2) Z,PRI,R2,KI, K2

200 ,(r TO 10
00 CALL E I r

END I



SJBRCUTINE SU! (YYP)

C

.SUdR !tJI INE TO FIND Y, WHERE Y IS THE LEVEL SUCH THAT FOR A GAUS-

i SIAN CR NCRMAL P RCeABILIY I01STRIBUTICN, P=PROP(R'<Y)
C

970 .= .- P

980 IF(C. T;.. ) :O T O : 0 0
990 A=1.

1000 T=S RT (ALOG( 1./Q :,2)
1010 Y=2.515517+T , (0 .80 2 8 53 + 0 .0 1 0 3 2 8 : ] )

1020 Y=Y/( 1.+T4( 1.4 27 PF8+T'(C. 189269+-0.C01308 4T ) ))

1030 Y=A ( T-Y)
YY=Y

1040-GO Il 1080
1050 \=- .
1060 Q= .-'

1.070 GO TO 1000
1080 ETUrN

END

SUCRCUTlIE SUB2 (?rK,YYP)

C SUBRU'T INE TO CA LCLATE THE FArDIG LEVEL IN DCB COMPA 1RED TO Ti HE
C FREE SPACE LEVEL. THE CALCULATICN IS BASED CN THE NCRTC\ 'S EGUA-
C TICNS.

REAL KFK8,LCG
LOG(AA)=ALO( AA)
Y=YY

650 1F(K.;T.L.) GO TO 800
660 K8=K4*2
670 IF(K.GT..1) ;JO TO 720
680 R=K*Y/1.4144(.-3./8.K8)+K8/+K88/4.*(.-K/6.)
690 R 8.68589 (R-(K-Y) 2 c (./4.-K Y/6./1.414))
700 R=R-3.685894LC G(SCRT (1 .+K8 ) )
710 GC TO 940
720 R=1.+Ke/4.-K:(1.-K8/24.*(1.-.35(_8)_

730 R=R+Y K/L.14*(1.-K8/8. I1.-3./6.6K8))
740 R= + Y '2 K 8;-2 / 2 4.: (. .-17./40. K 8)

750 -=R-K * *Y**3/32./ 2. / 1 + K :Y 4 / 8 0.
760 R=8.685894LOG(R)
770 R5=8.685 -9VLCG (S RT (1. +K8 ) )

780 R=R-R5

790 ,O ru 940
800 X=-LOG(P)
810 IF(K.,T.10.) GO TO 900

820 KB=1./(K*" -2)
8 30 R= 1 . +K 8 ' ( 1.+. 5-, K 8:,( 1.-X/2. K8 ; , 2 / 6. (1.-2.5 . X+2. /3. ,-X* 2)-

SR40 R=R+(K8 4 ) /24.4( 1..-17./12.*4X+49./. *X/2-33o2/_2.X3)

850 R=K'*2 *X R
860 R=4.34294(LOG(R)

R5=8 .6 8 89--LGG(S( RT (1.+K**2))

ej R=R-i'5
890 GO TU 940
900 R=8 . 689LOG(K) +4.34 29L )G X )

9 [O--R=R+4. 3429 /( K7.-  2 } ; ( I .- X 4 I ( K ::- 2) )

920 R5=8 .685894LCG SCRT ( 1.. +K1, 2)

930 R=R-RS5
940 RETURN

t- .* i 11 -
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APPENDIX - CHAPTER 7

C PHi . .LA.fL- A "\LYS 1S i- I IH P -r FILT Er' 1

.: -L K
I M S I" .' Y( 1.000) ,Z (1000) ,TAU 1. 1000).,0 TAUI (1000)

0l Ifl:1,.S IN'l FO(2)
4rA Ff/. 594,.595/

H=o.00-

=-/(2.W)
P I= 3.1. 4 539265

I F ( R M.T\ (4 FS.2)
2 FOIr, kAT 1 HO 3X, 'lUMBt. I F ' , 21X,2 'X ' , 24X,'X 2' ,22X, 'DTAJ ,1 20X, 'TAU'

3 FORf.i Ri ( 5X 1 4, 17X, E L4 7,1 L 3 X , E 1 / t  7  L ) X'  E 1 4 ." 7 ,9X, E 1 4 .- 7 )

4 FRMRAT (1H)

6 REAF( 1., 1 , LND = 10) X IA, X2A,A,B

D0o 9 J=,2 .

K= LO.

F REC=FO(J)W r =2. P I - FREQ

X 1= XIA
X2=X2A/
T '\U =0.

X 10.= 2
X2D=-- OS(XI) X2-AP SIi-X - (WZ'*2)/ AYi2) - W TAU/A)+PI/6o

DO 8 1=1., 1000 - - - ----. - .. .. . . ....

F( I.LE.2)3" TO 7
DT U 1\3BS( (Y ( -1 )-Y( 1-2 )/ (Z-el(-l )+Z( -2) )/2 ) )

TAU= ,AU+D TAU
7 X i1=, +R X I4 X D ... . . .

X 2 H=X 2 +~R 2D
X 1DH=X2H-
X 2DH -C0S (X 1[H) . X2-AP S X -( S I \ 1H ) ( K W/ Z A, 2) ) I S ( W IN WZ-T AU / ) +

1I/, .) /6. .... . .. .

X I=X +H4 ( (1 .- ) X + X 1 F)H)

X2=X2-+Ht( ( 1.-W)* X2D+ .. X2DH) . ... ...

XlO=X2
X2D=-COS(X 1. X2-AP*S I(X1 - (K WZ *2)/(A :12) )*S IN (WZ*'TAU/A)+P I /6.

Y( I)=X
Z() =X2
TAU (1)=T AU
1.)TAUL ( I )= TAU

8 CONTINUE
CALL PLOIlT (Y,Z,1000)

CCWIT UE
1.0 CALL EXIT

t Ni


